IFRAME SYNC
IFRAME SYNC
IFRAME SYNC
IFRAME SYNC

Help with $\int \frac{\sqrt{x^2 + 1}}{x}\:dx$

I have been starting at the following integral for the past 2 hours and can not see where I have gone wrong. Can anyone please assist in isolating where I've made a mistake.

My sanity thanks you in advance,

\begin{equation*} I = \int \frac{\sqrt{x^2 + 1}}{x}\:dx \end{equation*} Let $x = \tan(s)$: \begin{equation*} \frac{dx}{ds} = \sec^2(s) \rightarrow dx = \sec^2(s)\:ds \end{equation*} Thus, \begin{align*} I &= \int \frac{\sqrt{x^2 + 1}}{x}\:dx = \int \frac{\sqrt{\tan^2(s) + 1}}{\tan(s)}\cdot \sec^2(s)\:ds = \int \frac{\sec(s)}{\tan(s)}\sec^2(s)\:ds = \int \frac{\sec^3(s)}{\tan(s)}\:ds \\ &= \int \frac{\frac{1}{\cos^3(s)}}{\frac{\sin(s)}{\cos(s)}}\:ds = \int \frac{1}{\cos^3(s)} \cdot \frac{\cos(s)}{\sin(s)}\:ds = \int \frac{1}{\cos^2(s)\sin(s)}\:ds = \int \frac{1}{\left(1 - \sin^2(s)\right)\sin(s)}\:ds \\ &= \int \frac{1}{\left(1 + \sin(s)\right)\left(1 - \sin(s)\right)\sin(s)}\:ds \end{align*} Applying a Partial Fraction Decomposition we see: \begin{equation*} \frac{1}{\left(1 + \sin(s)\right)\left(1 - \sin(s)\right)\sin(s)} = \frac{1}{\sin(s)} - \frac{1}{2}\cdot \frac{1}{1 + \sin(s)} - \frac{1}{2}\cdot \frac{1}{1 - \sin(s)} \end{equation*} Thus, \begin{align*} I &= \int \frac{1}{\left(1 + \sin(s)\right)\left(1 + \sin(s)\right)\sin(s)}\:ds = \int \left[\frac{1}{\sin(s)} - \frac{1}{2}\cdot \frac{1}{1 + \sin(s)} - \frac{1}{2}\cdot \frac{1}{1 - \sin(s)} \right]\:ds \\ &= \int \frac{1}{\sin(s)}\:ds - \frac{1}{2} \int \frac{1}{1 + \sin(s)}\:ds - \frac{1}{2} \int \frac{1}{1 - \sin(s)}\:ds \end{align*} We now employ the Weierstrass Substitution $t = \tan\left(\frac{s}{2} \right)$: \begin{equation*} ds = \frac{2}{1 + t^2}\:dt, \quad \sin(s) = \frac{2t}{1 + t^2} \end{equation*} Thus, \begin{align*} I&= \int \frac{1}{\sin(s)}\:ds - \frac{1}{2} \int \frac{1}{1 + \sin(s)}\:ds - \frac{1}{2} \int \frac{1}{1 - \sin(s)}\:ds \\ &= \int \frac{1}{\frac{2t}{1 + t^2}} \cdot \frac{2}{1 + t^2}\:dt - \frac{1}{2} \int \frac{1}{1 + \frac{2t}{1 + t^2}}\cdot \frac{2}{1 + t^2}\:dt - \frac{1}{2} \int \frac{1}{1 - \frac{2t}{1 + t^2}}\cdot \frac{2}{1 + t^2}\:dt \\ &= \int \frac{1}{t}\:dt - \int \frac{1}{1 + t^2 + 2t}\:dt - \int \frac{1}{1 + t^2 - 2t}\:dt \\ &= \int \frac{1}{t}\:dt - \int \frac{1}{\left(t + 1\right)^2}\:dt - \int \frac{1}{\left(t - 1\right)^2}\:dt = \ln\left|t\right| - -\frac{1}{t + 1} - - \frac{1}{t - 1} + C \\ &= \ln\left|t\right| +\frac{1}{t + 1} + \frac{1}{t - 1} + C = \ln\left|t\right| +\frac{2t}{t^2 - 1} + C \end{align*} Where $C$ is the constant of integration. Here: \begin{equation*} t = \tan\left(\frac{s}{2} \right) = \tan\left(\frac{\arctan(x)}{2} \right) = \frac{\sqrt{x^2 + 1} - 1}{x} \end{equation*} Thus, \begin{align*} I&= \ln\left|t\right| +\frac{2t}{t^2 - 1} + C = \ln\left|\frac{\sqrt{x^2 + 1} - 1}{x}\right| +\frac{2\left(\frac{\sqrt{x^2 + 1} - 1}{x}\right)}{\left(\frac{\sqrt{x^2 + 1} - 1}{x} \right)^2 - 1} + C \\ &= \ln\left|\frac{\sqrt{x^2 + 1} - 1}{x}\right| + 2 \cdot \frac{\sqrt{x^2 + 1} - 1}{x} \cdot \frac{1}{\left(\frac{x^2 + 1 - 2\sqrt{x^2 + 1} + 1}{x^2} \right) - 1} + C \\ &= \ln\left|\frac{\sqrt{x^2 + 1} - 1}{x}\right| + 2 \cdot \frac{\sqrt{x^2 + 1} - 1}{x} \cdot \frac{x^2}{\left(x^2 + 1 - 2\sqrt{x^2 + 1} + 1\right) - x^2} + C \\ &= \ln\left|\frac{\sqrt{x^2 + 1} - 1}{x}\right| + 2 \cdot \frac{\sqrt{x^2 + 1} - 1}{x} \cdot \frac{x^2}{2\left(1 - \sqrt{x^2 + 1} \right)} + C = \ln\left|\frac{\sqrt{x^2 + 1} - 1}{x}\right| - x + C \\ \end{align*}



from Hot Weekly Questions - Mathematics Stack Exchange

Post a Comment

[blogger]

Contact Form

Name

Email *

Message *

copyrighted to mathematicianadda.com. Powered by Blogger.
Javascript DisablePlease Enable Javascript To See All Widget

Blog Archive