IFRAME SYNC
IFRAME SYNC
IFRAME SYNC
IFRAME SYNC

Define $I_n=\int_0^1\frac{x^n}{\sqrt{x^2+1}}dx$ for every $n\in\mathbb{N}$. Prove that $\lim_{n\to\infty}nI_n=\frac{1}{\sqrt 2}$.

Question: Define $I_n=\int_0^1\frac{x^n}{\sqrt{x^2+1}}dx$ for every $n\in\mathbb{N}$. Prove that $$\lim_{n\to\infty}nI_n=\frac{1}{\sqrt 2}$$.

My approach: Given that $I_n=\int_0^1\frac{x^n}{\sqrt{x^2+1}}dx, \forall n\in\mathbb{N}.$ Let us make the substitution $x^n=t$, then $$nI_n=\int_0^1\frac{dt}{\sqrt{1+t^{-2/n}}}.$$

Now since $0\le t\le 1\implies \frac{1}{t}\ge 1\implies \left(\frac{1}{t}\right)^{2/n}\ge 1 \implies 1+\left(\frac{1}{t}\right)^{2/n}\ge 2\implies \sqrt{1+\left(\frac{1}{t}\right)^{2/n}}\ge \sqrt 2.$

This implies that $$\frac{1}{\sqrt{1+\left(\frac{1}{t}\right)^{2/n}}}\le\frac{1}{\sqrt 2}\\ \implies \int_0^1 \frac{dt}{\sqrt{1+\left(\frac{1}{t}\right)^{2/n}}}\le \int_0^1\frac{dt}{\sqrt 2}=\frac{1}{\sqrt 2}.$$

So, as you can see, I am trying to solve the question using Sandwich theorem.

Can someone help me to proceed after this?

Also, in $$\lim_{n\to\infty}nI_n=\lim_{n\to\infty}\int_0^1\frac{dt}{\sqrt{1+t^{-2/n}}},$$ the limit and integral interchangeable?



from Hot Weekly Questions - Mathematics Stack Exchange

Post a Comment

[blogger]

Contact Form

Name

Email *

Message *

copyrighted to mathematicianadda.com. Powered by Blogger.
Javascript DisablePlease Enable Javascript To See All Widget

Blog Archive